SOME RESULTS ON THE NONSTATIONARY IDEAL II

BY

MOTI GITIK

School of Mathematical Sciences, Sackler Faculty of Exact Sciences Tel Aviv University, Tel Aviv 69978, Israel e-mail: gitik@math.tau.ac.il

ABSTRACT

This paper is a continuation of [Gi]. We show that the upper bound of [Gi] on the strength of $NS_{\mu+}$ precipitous for a regular μ is exact. The upper bounds on the strength of NS_{κ} precipitous for inaccessible κ are reduced quite close to the lower bounds.

Introduction

The paper is a continuation of [Gi]. An understanding of [Gi] is required. However, there is one exception, Proposition 2.1. It does not require any previous knowledge and we think it is interesting on its own.

The paper is organized as follows: In Section 1 we examine the strength of NS_{u+} precipitous. The proof of the main theorem there is a continuation of the proof of 2.5.1 from [Gi]. Section 2 presents a proof of a "ZFC variant" of Lemma 2.18 of [Gi]. It was used in the previous version of this paper to deduce that saturatedness of NS_{$_{\kappa}^{\aleph_0}$} over an inaccessible κ implies an inner model with $\exists \alpha \; o(\alpha) = \alpha^{++}$. This was subsequently improved to inconsistency by S. Shelah and the author. In Section 3 a new forcing construction of NS_{κ} precipitous over inaccessible is sketched. It combines ideas from [Gi, Sec. 3] and [Gil]. We assume familiarity with these papers.

ACKNOWLEDGEMENT: We are grateful to the referee for his remarks and suggestions.

Received December 11, 1994 and in revised form January 3, 1996

1. On the strength of precipitousness over a successor of regular

Our aim will be to improve the results of [Gi] on precipitousness of NS_{u+} for regular μ to the equiconsistency.* Throughout the paper $K(F)$ is the Mitchell Core Model with the maximal sequence of measures F , under the assumption $(\neg \exists \alpha \; \rho^{\mathcal{F}}(\alpha) = \alpha^{++})$. $\rho^{\mathcal{F}}(\kappa)$ denotes the Mitchell order of κ or, in other words, the length of the sequence $\mathcal F$ over κ . We refer to Mitchell [Mil] for precise definitions.

In order to state the result let us recall a notion of (ω, δ) -repeat point introduced in [Gi].

Definition: Let α , δ be ordinals with $\delta < \sigma^{\mathcal{F}}(\kappa)$. Then α is called a (ω, δ) -repeat **point** if (1) cf $\alpha = \omega$, (2) for every $A \in \Omega$ { $\mathcal{F}(\kappa, \alpha')|\alpha \leq \alpha' < \alpha + \delta$ } there are unboundedly many γ 's in α such that $A \in \bigcap \{ \mathcal{F}(\kappa, \gamma') | \gamma \leq \gamma' < \gamma + \delta \}.$

We are going to prove the following:

THEOREM 1.1: Suppose NS_{μ^+} is precipitous for a regular $\mu > R_1$ and GCH. *Then there exists an* $(\omega, \mu + 1)$ -repeat point over μ^+ in $K(\mathcal{F})$.

Remark: It is shown in [Gi] that starting with an $(\omega, \mu+1)$ -repeat point it is possible to obtain a model of NS_{μ^+} precipitous. On the other hand, precipitousness of NS $_{n+}^{\aleph_0}$ implies (ω, μ) -repeat point.

In what follows we will actually continue the proof of 2.5.1 of [Gi] and, assuming that the NS_{μ +} is precipitous (or even only NS_{$_{\mu}^{N_0}$} and NS_{$_{\mu}^{\mu}$ +), we will obtain} $(\omega, \mu + 1)$ -repeat point.

Proof: Let $\kappa = \mu^+$. We consider the ordinal $\alpha^* < \sigma^{\mathcal{F}}(\kappa)$ of the proof of 2.5.1 [Gi]. It was shown there to be a (ω, μ) -repeat point, under the assumption of nonexistence of up-repeat point and μ is not the successor of cardinal of cofinality ω . It was noted in [Gi] (the remark after Lemma 2.11) that if it is possible to remove the assumption of ω -closure of submodels in the Mitchell Covering Lemma, then the constructions of [Gi] apply also to μ which is the successor of a cardinal of cofinality ω . R.-D. Schindler claimed in [Sc] that the assumption on ω closure can be removed. So, further, we do not separate the treatment of such μ 's. Only submodels in this case, instead of being ω -closed, will be required to contain

^{*} For a singular μ the situation is less clear but, recently, M. Magidor constructed a model with $NS_{R_{u+1}}$ precipitous starting from a measurable Woodin cardinal. It appears close to equiconsistency by results of W. Mitchell, J. Steel and E. Schimmerling.

Vol. 99, 1997 NONSTATIONARY IDEAL 177

all implicitly mentioned ω -sequences. Intuitively, one can consider α^* as the least relevant ordinal. Basically, an ordinal α is called relevant if some condition in NS_{κ} forces that the measure $\mathcal{F}(\kappa, \alpha)$ is used first in the generic ultrapower to move κ and the cofinality of κ changes to ω . Using a nonexistence of up-repeat point, a set $A \in {\mathcal{F}}(\kappa, \alpha^*)$ such that $A \notin {\mathcal{F}}(\kappa, \beta)$ for β , $o^{\mathcal{F}}(\kappa) > \beta > \alpha^*$, was picked. This set A was used in [Gi] and will be used here to pin down α^* . Thus, for $\tau \leq \kappa$, if there exists a largest $\tau_1 < \sigma^{\mathcal{F}}(\beta)$ such that $A \cap \tau \in \mathcal{F}(\tau, \tau_1)$ then we denote it by τ^* . In this notation κ^* is just α^* . If $E = {\tau < \kappa}$ there exists $\{\tau^*\}\$ then $E \in \mathcal{F}(\kappa, \beta)$ for every β with $\alpha^* < \beta < \sigma^{\mathcal{F}}(\kappa)$. Also, $A \cup E$ contains all points of cofinality ω of a club, since by the definition of α^* , $A \cup E \in \bigcap \{f(\kappa, \alpha) | \alpha\}$ is a relevant ordinal}.

CLAIM 1: The set of $\alpha < \kappa$ satisfying (a) and (b) below is stationary in κ .

- (a) cf $\alpha = \mu$;
- (b) for every $i < \mu$

$$
\{\beta < \alpha \mid cf \beta = \aleph_0 \text{ and } o^{\mathcal{F}}(\beta) \geq \beta^* + i\}
$$

is a stationary subset of α .

Proof: Otherwise, let C be a club avoiding all the α 's which satisfy (a) and (b). Let N be a good model in the sense of 2.5.1 of [Gi], with $C \in N$. Consider $\langle \tau_n^N | n \langle \omega \rangle$, $\langle d_n^N | n \langle \omega \rangle$ and $\langle \beta_n^* | n \langle \omega \rangle$ of 2.5.1 [Gi]. Recall that $\langle \tau_n^N | n \langle \omega \rangle$ is a sequence of indiscernibles for N, each τ_n^N is a limit point of C, $d_n^N \subseteq C$ is an w-club in $\bigcup (N \cap \tau_n)$ consisting of indiscernibles of cofinality ω in C, for $\nu \in d_n^N$ ν^* exists and β_n^* represents it over κ , i.e. $\nu^* = \mathbb{C}(\kappa, \beta_n^*, \beta(\nu))(\nu)$, where C is the coherence function (identically for every $\nu, \nu' \in d_n^N$). Also, for every $\tau < \tau'$ in d_n^N , $\beta^N(\tau) < \beta^N(\tau')$, where $\beta^N(\tau)$ is the index of the measure on κ for which τ is an indiscernible.

Fix $n < \omega$. Then, $\tau_n \in C$. By 2.1 or 2.14 of [Gi] we can assume that cf $\tau_n = \mu$. Since (b) fails, there are $i_n < \mu$ and C_n a club of τ_n disjoint with

$$
\{\nu < \tau_n | \text{ cf } \nu = \aleph_0 \text{ and } \sigma^{\mathcal{F}}(\nu) \ge \nu^* + i_n \}.
$$

Using elementarity of N, it is easy to find such C_n inside N. Let $\delta = \bigcup_{n \leq \omega} i_n$. Using 2.1.1 (or 2.15 for inaccessible μ) of [Gi] we will obtain $N^* \supseteq N$, which agrees (mod initial segment) with N about indiscernibles but has sets d_n^N long enough to reach δ , i.e. there will be a final segment of τ 's in $d_n^{N^*}$ with $\beta^{N^*}(\tau) > \beta_n^* + \delta$.

But then, for such τ , $o^{\mathcal{F}}(\tau) \geq \tau^* + \delta$. This is impossible, since C_n , $d_n^{N^*}$ are both clubs of τ_n in N^* with bounded intersection. Contradiction.

Let S denote the set of α 's satisfying the conditions (a) and (b) of Claim 1. Now form a generic ultrapower with S in the generic ultrafilter. Denote it by M and let $\mathcal{F}(\kappa, \xi)$ be the measure used to move κ . Then, in M cf $\kappa = \mu$ and $S_i = \{\beta < \kappa \mid \text{cf } \beta = \aleph_0 \text{ and } \sigma^{\mathcal{F}}(\beta) > \beta^* + i\}$ is a stationary subset of κ for every $i < \mu$. Hence S_i is stationary also in V.

CLAIM 2: For every $i < \mu$ and $X \in \mathcal{P}(\kappa) \cap \mathcal{K}(\mathcal{F}), X \in \mathcal{F}(\kappa, \alpha^* + i)$ iff $S_i \setminus \{\beta < \kappa | \sigma^{\mathcal{F}}(\beta) > \beta^* + i \text{ and } X \cap \beta \in \mathcal{F}(\beta, \beta + i)\}\$ is nonstationary.

Proof: Fix $i < \mu$. $\mathcal{F}(\kappa, \alpha^* + i)$ is an ultrafilter over $\mathcal{P}(\kappa) \cap \mathcal{K}(\mathcal{F})$, so it is enough to show that for every $X \in \mathcal{F}(\kappa, \alpha^* + i)$ the set $S_i \setminus {\beta < \kappa | \sigma^{\mathcal{F}}(\beta) < \beta^* + i}$ and $X \cap \beta \in \mathcal{F}(\beta, \beta + i)$ is nonstationary.

Suppose otherwise. Let $X \in \mathcal{F}(\kappa, \alpha^* + i)$ be so that

$$
S' = S_i \setminus \{ \beta < \kappa | o^{\mathcal{F}}(\beta) > \beta^* + i \text{ and } X \cap \beta \in \mathcal{F}(\beta, \beta + i) \}
$$

is stationary.

Without loss of generality we may assume that S' already decides the relevant measure, i.e. for some $\gamma < \sigma^{\mathcal{F}}(\kappa)$, S' forces the measure $\mathcal{F}(\kappa, \gamma)$ to be used first to move κ in the embedding into generic ultrapower restricted to $\mathcal{K}(\mathcal{F})$. Now, $S' \subseteq {\{\beta < \kappa | \sigma^{\mathcal{F}}(\beta) > \beta^* + i\}}$. So, $\gamma > \gamma^* + i$, where γ^* is the largest ordinal γ^* below γ with $A \in \mathcal{F}(\kappa, \gamma^*)$. If $\gamma^* = \alpha^*$, then $\alpha^* + i < \gamma$ and hence $X^* = {\beta < \kappa | \sigma^{\mathcal{F}}(\beta) > \beta^* + i \text{ and } X \cap \beta \in \mathcal{F}(\beta, \beta + i)} \in \mathcal{F}(\kappa, \gamma) \text{ since this is}$ true in the ultrapower of $K(F)$ by $F(\kappa, \gamma)$. This leads to a contradiction, since, if $j: V \to M$ is a generic embedding forced by S', then $\kappa \in j(S')$ and $\kappa \in j(X^*)$, but $S' \cap X^* = \emptyset$. Contradiction.

If $\gamma^* < \alpha^*$, then also $\gamma < \alpha^*$ which is impossible, since there are no relevant ordinals below α^* . Also, γ^* cannot be above α^* since α^* is the last ordinal ξ with $A \in \mathcal{F}(\kappa, \xi)$.

For $i < \mu$ and a set $X \subseteq \kappa$ let us denote by X_i^* the set

$$
\{\beta < \kappa | \sigma^{\mathcal{F}}(\beta) > \beta^* + i \text{ and } X \cap \beta \in \mathcal{F}(\beta, \beta + i)\}.
$$

By Cub_{κ} we denote the closed unbounded filter over κ and let Cub $\kappa \restriction S_i$ be its restriction to S_i , i.e. $\{E \subseteq \kappa | E \supseteq C \cap S_i \text{ for some } C \in \text{Cub}_\kappa\}.$

CLAIM 3: For every $i < \mu$,

$$
\mathcal{F}(\kappa, \alpha^* + i) = \{ X \in (\mathcal{P}(\kappa) \cap \mathcal{K}(\mathcal{F}))^M | X_i^* \in (\mathrm{Cub}_{\kappa} \restriction S_i)^M \}.
$$

Proof: Let $X \in \mathcal{F}(\kappa, \alpha^*+i)$; then, by Claim 2, $X_i^* \in \text{Cub}_\kappa \restriction S_i$ in V. But then, also in M, $X_i^* \in (\text{Cub}_\kappa \restriction S_i)^M$, since $(\text{Cub}_\kappa)^M \supseteq (\text{Cub}_\kappa)^V$. Now, if $X \notin \mathcal{F}(\kappa, \alpha^* + i)$, then $Y = \kappa \backslash X \in \mathcal{F}(\kappa, \alpha^* + i)$, assuming $X \in \mathcal{P}(\kappa) \cap \mathcal{K}(\mathcal{F})$. By the above, $Y_i^* \in (\text{Cub}_\kappa \restriction S_i)^M$. But $X \cap Y = \emptyset$ implies $X_i^* \cap Y_i^* = \emptyset$. So $X_i^* \notin (\text{Cub}_\kappa \restriction S_i)^M$. \blacksquare

CLAIM 4: $\sigma^{\mathcal{F}}(\kappa) > \alpha^* + \mu$.

Proof: By Claim 3, $\mathcal{F}(\kappa, \alpha^* + i) \in M$ for every $i < \mu$. Hence $(o(\kappa))^M \ge \alpha^* + \mu$. But now, in V , $o^{\mathcal{F}}(\kappa) \geq \alpha^* + \mu + 1$.

We actually showed more:

CLAIM 5: $S \Vdash'' \overset{\xi}{\sim} > \alpha^* + \mu$ and for every $i < \mu$

$$
\mathcal{F}(\kappa, \alpha^* + i) = \{X \in (\mathcal{P}(\kappa) \cap \mathcal{K}(\mathcal{F}))^{\sim} | X_i^* \in (\mathrm{Cub}_{\kappa} \restriction S_i)^{\sim} \}'',
$$

where $\stackrel{\xi}{\sim}$ is a name of the index of the first measure $\mathcal{F}(\kappa, \xi)$ used to move κ and M is a generic ultrapower.

In order to complete the proof, we need to show that every $Y \in \mathcal{F}(\kappa, \alpha^* + \mu)$ belongs to $\mathcal{F}(\kappa, \gamma)$ for unboundedly many γ 's below α^* . The conclusion of the theorem will then follow by [Gi, Sec. 1]. So let $Y \in \mathcal{F}(\kappa, \alpha^* + \mu)$. Consider the set $Y^* = \{\beta < \kappa \mid \beta^* \text{ exists, } \sigma^{\mathcal{F}}(\beta) > \beta^* + \mu \text{ and } Y \cap \beta \in \mathcal{F}(\kappa, \beta^* + \mu)\} \cup Y$. Then $Y^* \in \bigcap \{f(\kappa,\alpha)|\alpha^* + \mu \leq \alpha < \varphi^{\mathcal{F}}(\kappa)\}\.$ It is enough to show that Y^* belongs to $\mathcal{F}(\kappa, \gamma)$ for unboundedly many γ 's below α .

CLAIM 6: $S\Y^*$ is nonstationary.

Proof: Suppose otherwise. Let $S' \subseteq S\Y^*$ be a stationary set forcing $\mathcal{F}(\kappa, \xi)$ to be the first measure used to move κ in the ultrapower, where $\xi < \sigma^{\mathcal{F}}(\kappa)$. Then, by Claim 5, $\xi \ge \alpha^* + \mu$. Hence, $Y^* \in \mathcal{F}(\kappa, \xi)$, which is impossible, since $Y^* \cap S' = \emptyset$. Contradiction.

CLAIM 7: α^* is a $\mu + 1$ -repeat point.

Proof: Let Y^{*} be as above. It is enough to find $\gamma < \alpha^*$ such that $Y^* \in \mathcal{F}(\kappa, \gamma)$. Let $C \subseteq \kappa$ be a club avoiding $S\Y^*$. Let N , $\{\tau_n | n < \omega\}$ be as in the proof of

Claim 1 (i.e. as in the proof of 2.5.1 [Gi]) only with the club of Claim 1 replaced by C and with $Y^* \in N$. Then τ_n 's are in $S \cap C$, and hence in Y^* , which means that for all but finitely many n 's, $Y^* \in \mathcal{F}(\kappa,\beta^N(\tau_n))$, by [Mil ,Mi2], since τ_n 's are indiscernibles for $\beta^{N}(\tau_{n})$'s.

The claim does not rule out the possibility that some Y^* reflects only boundedly many times below α^* . Thus, there is possibly some $\eta < \alpha^*$ such that the $\beta^N(\tau_n)$'s of Claim 7 are always below η . This would mean that $\beta_n^* > \beta^N(\tau_n)$, where β_n^* is the stabilized value of $(\beta(\nu))^*$ for $\nu \in d_n^N$. We will use Claim 5 in order to show that this is impossible. Namely, the following holds:

CLAIM 8: In the notation of Claim 7, for all but finitely many n's, $(\beta^N(\tau_n))^*$ = β_n^* .

Proof: By Claim 5, for all but nonstationary many ν 's in S the following property (*) holds: $\sigma^{\mathcal{F}}(\nu) \geq \nu^* + \mu$ and, for every $i < \mu$, $\mathcal{F}(\nu,\nu^* + i) =$ $\{X \in \mathcal{P}(\nu) \cap \mathcal{K}(\mathcal{F}) | X_i^* \in \text{Cub}_{\nu} \mid \{\rho < \nu | cf\rho = \aleph_0 \text{ and } \sigma^{\mathcal{F}}(\rho) > \rho^* + i\} \}.$

Without loss of generality let us assume that $(*)$ holds for every element of S, otherwise just remove the nonstationary many points. Then, preserving notations of Claim 7, τ_n 's satisfy (*). We now show that ultrafilters $\mathcal{F}(\tau_n, \tau_n^* + i)$ correspond to $\mathcal{F}(\kappa, \beta_n^* + i)$ (i.e. $\tau_n^* + i = \mathbb{C}(\kappa, \beta_n^* + i, \beta(\tau_n))(\tau_n)$) for all but finitely many $n < \omega$ and all $i < \mu$.

Let $\overline{\beta}_{n}^{*}$ denote $(\beta^{N}(\tau_{n}))^{*}$ and we will drop the upper index N further. Then $\tau_n^* + i = \mathbb{C}(\kappa, \overline{\beta}_n^* + i, \beta(\tau_n)) (\tau_n)$ for every $n < \omega$, where C is the coherence function (see [Mil] or [Gi]). Suppose that $\beta_n^* \neq \overline{\beta}_n^*$ for infinitely many n's. For simplicity let us assume that this holds for every $n < \omega$. In the general case only the notation is more complicated. There will be $X_n \in (\mathcal{F}(\kappa, \overline{\beta}_n^*) \backslash \mathcal{F}(\kappa,\beta_n^*)) \cap N$ for every $n < \omega$, since N is an elementary submodel. Let $n < \omega$ be fixed. Pick $\mathcal{K}(\mathcal{F})$ -least $X_n \in \mathcal{F}(\kappa, \overline{\beta}_n^*)\setminus \mathcal{F}(\kappa, \beta_n^*)$. Still it is in N by elementarity. Also its support (in the sense of [Mi1, Mi2]) will be below τ_n , i.e. $X_n = h^N(\delta)$, for $\delta < \tau_n$, where h^N is the Skolem function of $N \cap \mathcal{K}(\mathcal{F})$. The reason for this is that X_n appears once both $\overline{\beta}_n^*$ and β_n^* appear. But $\overline{\beta}_n^*$ appear below τ_n since the support of τ_n is below τ_n and β_n^* appear before τ_n since, for $\nu \in d_n \subseteq \tau_n$, $(\beta^N(\nu))^* = \beta_n^*$. Hence $X_n \cap \tau_n \in \mathcal{F}(\tau_n, \tau_n^*)$. Then by $(*),$

$$
(X_n)_0^* \in \text{Cub}_{\tau_n} \restriction \{\rho < \tau_n | \text{cf } \rho = \aleph_0 \text{ and } \sigma^{\mathcal{F}}(\rho) > \rho^* \}.
$$

This is clearly true also in N. But then $(X_n)_0^* \cap \cup (N \cap \tau_n)$ contains an ω -club intersected with the set $\{\rho < \tau_n\vert cf \rho = \aleph_0 \text{ and } \sigma^{\mathcal{F}}(\rho) > \rho^*\}.$ Hence $(X_n)_0^* \cap d_n$ is unbounded in $\bigcup (N \cap \tau_n)$. Then $(X_n)^*_{0} \in \mathcal{F}(\kappa, \beta^*_{n} + i)$ for some $i, 0 < i < \mu$, which implies that $X_n \in \mathcal{F}(\kappa,\beta_n^*)$. Contradiction.

Combining Claims 7 and 8 we obtain that $Y^* \in \mathcal{F}(\kappa, \beta_n^* + \chi)$ for some $\chi \geq \mu$, for all but finitely many n's. Now, β_n^* 's are unbounded in α^* by [Gi] and hence we have an unbounded reflection of Y below α^* .

2. On a fast sequence of ordinals or "ZFC variant" of a lemma of [Gi]

In this section were present a "ZFC variant" of Lemma 2.18 of [Gi]. It was used here originally to answer a question of [Gi] showing that the saturatedness of $\mathrm{NS}^{\aleph_0}_{\kappa}$ over inaccessible κ implies an inner model with $\exists \alpha \ o(\alpha) = \alpha^{++}$. But since then it was shown by S. Shelah and the author that $NS^{R_0}_{\kappa}$ cannot be saturated over an inaccessible κ . We think that this "ZFC variant" is still interesting. Moreover a variation of it turned out to be crucial in the proof of the inconsistency. The argument here will be somewhat simpler and for a reader familiar with generic ultrapowers it will be easy to relate it to saturated ideals.

PROPOSITION 2.1: Let $V_1 \subseteq V_2$ be two models of ZFC. Let κ be a regular *cardinal of* V_1 which changes its cofinality to Θ in V_2 . Suppose that in V_1 there is an almost decreasing (mod nonstationary or equivalently mod bounded) sequence *of clubs of* κ *of length* $(\kappa^+)^{V_1}$ *so that every club of* κ *of* V_1 *almost contains one of the clubs of the sequence.* Assume *that V2 satisfies the following:*

- (1) $cf(\kappa^+)^{V_1} \ge (2^{\Theta})^+$ or $cf(\kappa^+)^{V_1} = \Theta;$
- $(2) \kappa > \Theta^+$.

Then in V_2 *there exists a cofinal in* κ *sequence* $\langle \tau_i | i \langle \Theta \rangle$ consisting of *ordinals of cofinality* $\geq \Theta^+$ *so that every club of* κ *of* V_1 *contains a final segment of* $\langle \tau_i | i < \Theta \rangle$.

Remark: (1) If in V_1 , $2^k = \kappa^+$, then clearly there exists an almost decreasing sequence of clubs of κ of length κ^+ so that every club of κ of V_1 almost contains one of the clubs of the sequence.

(2) M. Dzamonja and S. Shelah [D-Sh] using club guessing techniques were able to replace the condition (1) by weaker conditions.

Proof: If $cf(\kappa^+)^{V_1} = \Theta$ then we can simply diagonalize over all the clubs. So let us concentrate on the case $cf(\kappa^+)^{V_1} \geq (2^{\Theta})^+$. Suppose otherwise. Assume for simplicity that $\Theta = \aleph_0$. Let C be a club in κ in V_1 . Define in V_2 a wellfounded tree

 $\langle T(C), \leq_C \rangle$. Fix a well ordering \prec of a larger enough portion of V_2 . Let the first level of $T(C)$ consist of the \prec -least cofinal in κ sequence of order type ω . Suppose that $T(C)$ \upharpoonright $n+1$ is defined. We define Lev_{n+1}(T(C)). Let $\eta \in \text{Lev}_n(T(C))$. Let η^* be the largest ordinal in $T(C) \restriction n + 1$ below η . We assume by induction that it exists. If cf $\eta = \aleph_0$, then pick $\langle \eta_n | n \langle \omega \rangle$ the least cofinal sequence in η of order type ω . Let the set of immediate successors of η , Suc $_{T(C)}(\eta)$, be $\{\eta_n \mid n < \omega, \eta_n > \eta^*\}.$

If cf $\eta \ge \aleph_1$, then consider $\eta' = \bigcup (C \cap \eta)$. If $\eta' = \eta$, then let $\text{Suc}_{T(C)}(\eta) = \emptyset$. If η^* < η' < η , then let $\text{Suc}_{T(C)}(\eta) = {\eta'}$. Finally, if $\eta' \leq \eta^*$ then let $Suc_{T(C)}(\eta) = \emptyset$. This completes the inductive definition of $\langle T(C), \leq_C \rangle$. Obviously, it is wellfounded and countable. Let $T^*(C)$ denote the set of all endpoints of $T(C)$ which are in C. Notice that by the construction any such point is of uncountable cofinality. Also, $T^*(C)$ is unbounded in κ , since $otp(C) = \kappa$ and $\kappa > \aleph_1$.

There must be a club $C_1 \subseteq C$ in V_1 avoiding unboundedly many points of $T^*(C)$, since otherwise the sequence $\langle \tau_i | i \langle \hat{R} \rangle \rangle$ required by the proposition could be taken from $T^*(C)$. This means, in particular, that for every $\alpha < \kappa$ there will be

$$
\overline{\nu} = \langle \nu_1, \ldots, \nu_n \rangle \in T(C) \cap T(C_1)
$$

so that

(a) cf
$$
\nu_n > \aleph_0
$$
;

(b) $\text{Suc}_{T(C)}(\nu_n) = {\nu_{n+1}}$ for some $\nu_{n+1} \in C \backslash \alpha;$

(c) either

$$
(c1) \operatorname{Suc}_{T(C_1)}(\nu_n) = \emptyset
$$

or

(c2) for some $\rho \in (C_1 \cap \nu_{n+1})\setminus \alpha$ $\text{Suc}_{T(C_1)}(\nu_n) = {\rho}.$

Now define a sequence $\langle C_{\alpha} | \alpha < (2^{\aleph_0})^+ \rangle$ of clubs so that

- (1) C_{α} is a club in κ in V_1 ;
- (2) if $\beta < \alpha$ then $C_{\alpha} \backslash C_{\beta}$ is bounded in κ ;
- (3) $C_{\alpha+1}$ avoids unboundedly many points of $T^*(C_{\alpha})$.

Since $cf(\kappa^+)^{V_1} \geq (2^{\aleph_0})^+$ and in V_1 there is an almost decreasing (mod bounded) sequence of κ^+ -clubs generating the club filter, there is no problem in carrying out the construction of $\langle C_{\alpha} | \alpha < (2^{\aleph_0})^+ \rangle$ satisfying (1)-(3). The construction of $C_{\alpha+1}$ over C_{α} will be like those above for C_1 and C. Also the conditions (a), (b), (c) above will be satisfied by C_{α} , $C_{\alpha+1}$ replacing C, C_1 .

Shrinking the set of α 's if necessary we can assume that for every $\alpha, \beta < (2^{\aleph_0})^+$ $\langle T(C_{\alpha}), \leq_{C_2}, \leq \rangle$ and $\langle T(C_{\beta}), \leq_{C_{\beta}}, \leq \rangle$ are isomorphic as trees with ordered levels.

Let $\langle \kappa_m | m \langle \omega \rangle$ be the \prec -least cofinal in κ sequence.

Let $\alpha < \beta < (2^{\aleph_0})^+$. Since C_β is almost contained in $C_{\alpha+1}$, it avoids unboundedly many points in $T^*(C_\alpha)$. So for every $m < \omega$ there is $\overline{\nu} = \langle \nu_1, \ldots, \nu_n \rangle \in$ $T(C_{\alpha}) \cap T(C_{\beta})$ so that

- (a) cf $\nu_n > \aleph_0$;
- (b) $\text{Suc}_{T(C_{\alpha})}(\nu_n) = {\{\nu_{n+1}^{\alpha}\}\text{ for some }\nu_{n+1}^{\alpha} \in C_{\alpha}\setminus\kappa_m};$
- (c) for some $\nu_{n+1}^{\beta} \in (C_{\beta} \cap \nu_{n+1}^{\alpha}) \setminus \kappa_m$, $\text{Suc}_{T(C_{\beta})}(\nu_n) = {\nu_{n+1}^{\beta}}$.

Thus, pick $\ell > m$ so that $C_\beta \setminus \kappa_{\ell-1} \subseteq C_\alpha$. We consider subtrees

$$
T(C_{\gamma})_{\ell} = \{ \overline{\eta} \in T(C_{\gamma}) | \exists k \geq \ell \ \overline{\eta} \ \geq_{C_{\gamma}} \langle \kappa_k \rangle \}
$$

where $\gamma = \alpha, \beta$.

Let π be an isomorphism between $T(C_{\alpha})$ and $T(C_{\beta})$ respecting the order of the levels. Notice that the first level in both trees is the same $\{\kappa_i | i < \omega\}$. Hence, π will move $T(C_{\alpha})_l$ onto $T(C_{\beta})_l$.

Pick the maximal $n < \omega$ such that π is an identity on $(T(C_{\alpha})_{\ell}) \restriction n + 1$. It exists since $T^*(C_{\alpha})\backslash C_{\beta}$ is unbounded in κ . Now let ν be the least ordinal in Lev_{n+1} $(T(C_{\alpha})_t)$ such that $\pi(\langle\nu_1,\ldots,\nu_n,\nu\rangle) \neq \langle\nu_1,\ldots,\nu_n,\nu\rangle$, where $\langle\nu_1,\ldots,\nu_n\rangle$ is the branch of $T(C_{\alpha})_t$ leading to ν .

Consider ν_n . If cf $\nu_n = \aleph_0$, then we are supposed to pick the \prec -least cofinal in ν_n sequence $\langle \nu_{ni}|i<\omega\rangle$ and the maximal element ν_n^* of the tree $T(C_{\alpha})$ below ν_n . Suc_{T(C_a)(ν_n) will be $\{\nu_{ni}|i < \omega \text{ and } \nu_{ni} > \nu_n^*\}$. Notice that $\nu_n^* \ge \kappa_{n-1}$ by} the definition of the tree $T(C_{\alpha})$. Hence, either $\nu_n^* = \kappa_{n-1}$ or $\nu_n^* \in T(C_{\alpha})_{\ell} \restriction n + 1$ since elements of $T(C_{\alpha})$ which are above κ_{n-1} in the tree order are below it as ordinals. But since $T(C_{\alpha})_l \restriction n+1 = T(C_{\beta})_l \restriction n+1$ and $\kappa_{l-1} \in T(C_{\beta})$, the same is true about $\text{Suc}_{T(C_{\beta})}(\nu_n)$, i.e. it is $\{\nu_{ni}|i < \omega \text{ and } \nu_{ni} > \nu_n^*\}$. Then π will be an identity on $\text{Suc}_{T(C_{\alpha})}(\nu_n)$ and, in particular, will not move ν . Contradiction.

So cf ν_n should be above \aleph_0 . Once again the maximal elements of $T(C_\alpha) \restriction n+1$ and $T(C_\beta)$ | n + 1 below ν_n are the same. Let ν_n^* denote this element. Now, $\nu \in \text{Suc}_{T(C_{\alpha})}(\nu_n)$, hence $\nu = \bigcup (C_{\alpha} \cap \nu_n)$ $\nu_n^* < \nu < \nu_n$ and $\text{Suc}_{T(C_{\alpha})}(\nu_n) = {\nu}$ by the definition of the tree $T(C_{\alpha})$. π is an isomorphism, so $\text{Suc}_{T(C_{\alpha})}(\nu_n) \neq \emptyset$. By the definition of the tree $T(C_\beta)$, $\nu^* < \nu' < \nu_n$ and $\text{Suc}_{T(C_\beta)}(\nu_n) = {\{\nu'\}}$ where

 $\nu' = \bigcup (C_\beta \cap \nu_n)$. By the choice of $\nu, \nu \neq \nu'$. But $\nu, \nu' > \kappa_{\ell-1}$ and $C_\beta \setminus \kappa_{\ell-1} \subseteq C_\alpha$, so $\nu' \in C_\alpha$. Hence $\nu' < \nu$ and the sequence $\langle \nu_1, \ldots, \nu_n \rangle$ is as desired.

Let $\langle T, \leq_T, \leq \rangle$ be a countable tree consisting of countable ordinals with the usual order \leq between them isomorphic to $\langle T(C_{\alpha}), \leq_{C_{\alpha}}, \leq \rangle$ $(\alpha < (2^{\aleph_0})^+)$. Define a function $h : [(2^{\aleph_0})^+]^2 \to \omega$ as follows: $f(\alpha, \beta) =$ the minimal element of T corresponding to some

$$
\overline{\nu} = \langle \nu_1, \ldots, \nu_n \rangle \in T(C_\alpha) \cap T(C_\beta)
$$

satisfying the conditions (a), (b) and (c).

By Erdös-Rado there exists a homogeneous infinite set $A \subseteq (2^{\aleph_0})^+$. Let $\langle \alpha_n | n \langle \omega \rangle$ be an increasing sequence from A. Then there is $\overline{\nu} = \langle \nu_1, \ldots, \nu_n \rangle \in$ $\bigcap_{m<\omega}T(C_{\alpha_m})$ witnessing (a), (b), (c). But by (c), $\nu_{n+1}^{\alpha_m} > \nu_{n+1}^{\alpha_m+1}$ for every $m < \omega$. Contradiction.

If there is no inner model of $\exists \alpha o(\alpha) = \alpha^{++}$, then a sequence $\langle \tau_n | n < \omega \rangle$ of 2.1 is actually a sequence of indiscernibles for κ . This follows easily from Proposition 2.1 and the Mitchell Covering Lemma [Mi3].

PROPOSITION 2.2: The final segment of the sequence $\langle \tau_n | n \langle \omega \rangle$ consists of $indiscernibles$ for κ .

Proof: Suppose otherwise. Then by the Mitchell Covering Lemma [Mi3] there is $h \in \mathcal{K}(\mathcal{F})$ and $\delta_n < \tau_n$ $(n < \omega)$ such that $h(\delta_n) \geq \tau_n$ for infinitely many n's. Define a club in $\mathcal{K}(\mathcal{F})$: \cdot

$$
C=\{\nu<\kappa|h^{''}(\nu)\subseteq\nu\}.
$$

Then, by the choice of $\langle \tau_n | n < \omega \rangle$, there is $n_0 < \omega$ such that for every $n \geq n_0$ $\tau_n \in C$, which is impossible. Contradiction.

3. On the strength of precipitousness of a nonstationary ideal over an inaccessible

We are going to show that the assumptions used in [Gi] making NS_{κ} precipitous $((\omega, \kappa^+ + 1)$ -repeat point) and NS^N₆</sub> precipitous $((\omega, \kappa^+)$ -repeat point) over an inaccessible κ can be weakened to an $(\omega, \kappa + 1)$ -repeat point and to an (ω, κ) repeat point, respectively. This is quite close to the equiconsistency, since by [Gi], an $(\omega, < \kappa)$ -repeat point is needed for the existence of such ideals.

THEOREM 3.1: *Suppose that there exists an* $(\omega, \kappa+1)$ -repeat point over κ . Then in a generic extension preserving inaccessibility of κ , NS_{κ} is a precipitous ideal.

The proof combines constructions of [Gi] and [Gil]. We will stress only the new points.

Sketch of the Proof: Let $\alpha < o(\kappa)$ be an $(\omega, \kappa + 1)$ -repeat point for $\langle \mathcal{F}(\kappa,\alpha') | \alpha' < o(\kappa) \rangle$, i.e. cf $\alpha = \aleph_0$ and for every $A \in \bigcap \{ \mathcal{F}(\kappa,\alpha^* + i) | \alpha' \in \alpha \}$ $i \leq \kappa$ there are unboundedly many β 's in α such that $\beta + \kappa < \alpha$ and $A \in$ $\bigcap \{ \mathcal{F}(\kappa,\beta+i) \mid i \leq \kappa \}.$

As in [Gi] we first define the iteration P_{δ} for δ in the closure of $\{\beta \leq \kappa \mid \beta \text{ is an inaccessible or } \beta = \gamma + 1 \text{ for an inaccessible } \gamma\}.$ On limit stages as in [Gi] the limit of [Gi2] is used. Define $\mathcal{P}_{\delta+1}$. If $o(\delta) \neq \beta + \delta$ or $o(\delta) \neq \beta + \delta + 1$ for some β then $\mathcal{P}_{\delta+1} = \mathcal{P}_{\delta} * C(\delta^+) * \mathcal{P}(\delta, o(\delta))$ exactly as in [Gi], where $C(\delta^+)$ is the Cohen forcing for adding δ^+ functions from δ to δ and $\mathcal{P}(\delta, o(\delta))$ is a forcing used in [Gi] for changing cofinalities without adding new bounded sets.

Now let $o(\delta) = \beta + \delta$ for some ordinal $\beta, \beta > \delta$. First we force as above with $C(\delta^+).$

CASE 1: The value of the first Cohen function added by $C(\delta^+)$ on 0 is not 0. Then we force as above with $\mathcal{P}(\delta, o(\delta))$.

CASE 2: The value of the first Cohen function added by $C(\delta^+)$ on 0 is 0.

Then we are going to shoot a club through $\bigcap \{ \mathcal{F}(\delta,\beta + i) \mid i < \delta \}$ using the forcing notion Q described below.

 $Q = \{ \langle c, e \rangle \mid c \subseteq \delta \text{ closed}, |c| < \delta, e \subseteq \bigcap \{ \mathcal{F}(\delta, \beta + i) \mid i < \delta \}, |e| < \delta \},$ $\langle c_1, e_1 \rangle \leq \langle c_2, e_2 \rangle$ iff c_2 is an end-extension of $c_1, e_1 \subseteq e_2$ and, for every $A \in e_1$, $c_2 \setminus c_1 \subseteq A$. Now every regular $i < \delta$ forcing with $\mathcal{P}(\delta, \beta + i)$ produces a club through $\bigcap \{ \mathcal{F}(\delta,\beta+j) \mid j < i \}$ changing cofinality of δ to i. Thus Q contains an *i*-closed dense subset in any $\mathcal{P}(\alpha,\beta+i)$ -generic extension of $V^{\mathcal{P}_{\alpha}*C(\alpha^+)}$. Based on this observation, we are going to use here the method of [Gill. It makes the iteration of such forcings Q possible.

If $o(\delta) = \beta + \delta + 1$ for some β , $\beta > \delta$, then we combine both previous cases together inside the Prikry sequence produced at this stage.

Namely, we proceed as follows. Let $i : V \to M \simeq \text{Ult}(V, \mathcal{F}(\delta,\beta+\delta)).$ We consider also the second ultrapower, i.e. $N \simeq \text{Ult}(M, \mathcal{F}(i(\delta), i(\beta) + i(\delta)).$ Let $k: M \to N$ and $j = k \circ i: V \to N$ be the corresponding elementary embeddings.

Then, in N, $o(\delta) = \beta + \delta$ and $o(i(\delta)) = i(\beta) + i(\delta)$. So, in N, both δ and $i(\delta)$ are of the type of the previous cases. We want to deal with δ as in Case 1 and with $i(\delta)$ as in Case 2. This can easily be arranged, since we are free to change one value of a Cohen function responsible for the switch between Cases 1 and 2. The next stage will be to define an extension $\mathcal{F}^*(\delta, \beta + \delta)$ of $\mathcal{F}(\delta, \beta + \delta) \times \mathcal{F}(\delta, \beta + \delta)$ in $V[G_\delta]$, where $G_\delta \subseteq \mathcal{P}_\delta$ is generic. For this use [Gi1] where N was first stretched by using the direct limit of $\langle F(i(\delta), i(\beta)+\xi) | \xi < i(\delta) \rangle$. Finally we force a Prikry sequence using $\mathcal{F}^*(\delta, \beta + \delta)$. Notice that the following holds:

(*) if $\langle\langle \delta_n,\rho_n\rangle | n \langle \omega \rangle$ is such a sequence then both $\langle \delta_n | n \langle \omega \rangle$ and $\langle \rho_n \mid n \langle \omega \rangle$ are almost contained in every club of δ of V.

Simply because $\langle \delta, i(\delta) \rangle \in j(C)$ for a club $C \subseteq \delta$ in V.

This completes the definition of $\mathcal{P}_{\delta+1}$ and hence also the definition of the iteration.

The intuition behind this is as follows. We add a club subset to every set $A \in \bigcap \{ \mathcal{F}(\kappa, \alpha + i) | i \leq \kappa \}.$ α is $(\omega, \kappa + 1)$ -repeat point, so A reflects unboundedly many times in α , i.e. $A \in \bigcap \{ \mathcal{F}(\kappa,\beta+i) | i \leq \kappa \}$ for unboundedly many β 's in α .

Reflecting this below κ , we will have $A \cap \delta \in \bigcap \{ \mathcal{F}(\delta, \gamma + 1)|i \leq \delta \}$, where $o(\delta) = \gamma + \delta$. In [Gi, Sec. 3], we had $(\alpha, \kappa^+ + 1)$ -repeat point which corresponds to $\bigcap \{F(\delta, \gamma + i)| i \leq \delta^+\}\.$ Then just the forcing $\mathcal{P}(\delta, o(\delta))$ will add a club through every set in $\bigcap \{F(\delta, \gamma + i)| i \leq \delta^+\}\.$ Here our assumptions are weaker and we use the forcing Q instead. There are basically two problems with this: iteration and integration with $\mathcal{P}(\delta,\beta)$'s. For the first problem the method of [Gi1] is used directly. The problematic point with the second is that once using Q we break the Rudin-Keisler ordering of extensions of $\mathcal{F}(\delta,\beta)$'s used in $\mathcal{P}(\delta,o(\delta))$. In order to overcome this difficulty, we split the case $o(\delta) = \beta + \delta$ into two. Thus in Case 1 we keep Rudin-Keisler ordering and in Case 2 force with Q. Finally, at stages α with $o(\delta) = \beta + \delta + 1$ both cases are combined in the fashion described above. The rest of the proof is as in [Gi, Sec. 3].

The following obvious changes needed to be made: instead of $E \in$ $\bigcap \{\mathcal{F}(\kappa,\beta)|\alpha<\beta\leq \alpha+\kappa^+\}$ we now deal with $E\in\bigcap \{\mathcal{F}(\kappa,\beta)|\alpha<\beta\leq \alpha+\kappa\}$ and instead of $E(\kappa^+)$ there we use $E(\kappa) = {\delta \in E}$ there is $\overline{\delta}$ s.t. $o^{\mathcal{F}}(\delta) = \overline{\delta} + \kappa$ and $\delta \cap E \in \bigcap \{ \mathcal{F}(\delta, \delta') | \overline{\delta} \leq \delta' < \overline{\delta} + \kappa^+ \}$ which belongs to $\mathcal{F}(\kappa, \beta + \kappa)$ for unboundedly many β 's in α . Lemmas 3.2-3.5 of [Gi] have the same proof in the present context. The changes in the proof of Lemma 3.6 of [Gi] (actually the claim there) use the method of iteration of Q 's and the principal $(*)$.

Vol. 99, 1997 NONSTATIONARY IDEAL 187

If we are not concerned about a regular cardinal, then the same construction starting with an (ω, κ) -repeat point turns NS^{Sing} into a precipitous ideal. So the following holds:

THEOREM 3.2: *Suppose that there exists an* (ω, κ) -repeat point over κ . Then in *a generic extension preserving inaccessibility of* κ , $\text{NS}_{\kappa}^{\text{Sing}}$ is a precipitous ideal.

4. Open problems

- 1. Is the strength of $\text{NS}_{\kappa}^{\aleph_0}$ precipitous over an inaccessible κ (ω , $\lt \kappa$)-repeat point?
- 2. Can a model for NS_{κ} precipitous over an inaccessible κ be constructed from something weaker than an $(\omega, \kappa+1)$ -repeat point?
- 3. What is the strength of NS_{κ} precipitous over the first inaccessible?

The upper bound for (3) is a Woodin cardinal, see [Sh-Wo]. If it is possible to construct a model with $\text{NS}_{\kappa}^{\aleph_0}$ precipitous from an $(\omega, < \kappa)$ -repeat point, then we think that this assumption is also sufficient for (2) and (3).

4. How strong is "there is a precipitous ideal over the first inaccessible"?

By [Sh-Wo] a Woodin cardinal suffices. On the other hand, one can show that at least $o(\kappa) = \kappa$ is needed.

References

- [D-Sh] M. Dzamonja and S. Shelah, *Some results on squares, outside guessing dubs,* to appear.
- [Gi] M. Gitik, *Some results on the nonstationary ideal,* Israel Journal of Mathematics 92 (1995), 61-112.
- [Gil] M. Gitik, *On clubs consisting of former regulars,* Journal of Symbolic Logic, to appear.
- [Gi2] M. Gitik, *Changing cofinalities and the nonstationary ideal,* Israel Journal of Mathematics 56 (1986), 280-314.
- [Gi-Mi] M. Gitik and W. Mitchell, *Indiscernible sequences for extenders and the singular cardinal hypothesis,*
- [Je-Wo] T. Jech and H. Woodin, *Saturation of the closed unbounded filter,* Transactions of the American Mathematical Society 292 (1985), 345-356.
- $[Mi1]$ W. Mitchell, *The* core *model for sequences of measures I,* Mathematical Proceedings of the Cambridge Philosophical Society 95 (1984), 41-58.
- [Mi3] W. Mitchell, *Applications of* the *Core Model for sequences of measures,* Transactions of the American Mathematical Society 299 (1987), 41-58.
- **[Sc]** R.-D. Schindler, *Covering below* $o(\kappa) = \kappa^{++}$, preprint.
- [Sh-Wo] S. Shelah and H. Woodin, Large *cardinals imply that every reasonably definable set of reals is Lebesgue measurable,* Israel Journal of Mathematics 70 (1990), 381-394.