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ABSTRACT 

This paper is a continuation of [Gi]. We show that the upper bound of [Gi] 

on the strength of NS~+ precipitous for a regular/~ is exact. The upper 

bounds on the strength of NS~ precipitous for inaccessible ,~ are reduced 

quite close to the lower bounds. 

Introduction 

The paper is a continuation of [Gi]. An understanding of [Gi] is required. 

However, there is one exception, Proposition 2.1. It does not require any previous 

knowledge and we think it is interesting on its own. 

The paper is organized as follows: In Section 1 we examine the strength of 

NSu+ precipitous. The proof of the main theorem there is a continuation of 

the proof of 2.5.1 from [Gi]. Section 2 presents a proof of a "ZFC variant" of 

Lemma 2.18 of [Gi]. It was used in the previous version of this paper to deduce 

that saturatedness of NS~ ~ over an inaccessible ~ implies an inner model with 

3c~ o(c~) = c~ ++. This was subsequently improved to inconsistency by S. Shelah 

and the author. In Section 3 a new forcing construction of NS~ precipitous over 

inaccessible is sketched. It combines ideas from [Gi, Sec. 3] and [Gil]. We assume 

familiarity with these papers. 
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1. On the strength of precipitousness over a successor of regular 

Our aim will be to improve the results of [Gi] on precipitousness of NSv+ for 

regular # to the equiconsistency.* Throughout the paper ~C(F) is the Mitchell 

Core Model with the maximal sequence of measures ~', under the assumption 

('~3a oT(a) = a++). o~'(~) denotes the Mitchell order of ~ or, in other words, 

the length of the sequence ~" over ~. We refer to Mitchell [Mil] for precise 

definitions. 

In order to state the result let us recall a notion of (w,6)-repeat point 

introduced in [Gi]. 

Definition: Let a, 6 be ordinals with 6 < o~-(~). Then a is called a (ca, b)-repeat 
point if (1) c f a  = ca, (2) for every A E n{7(~,a')la _< a '  < a + ~} there are 

unboundedly many 7's in a such that A E N{3r(a, "/')[7 -< "~' < 7 + ~f}. 

We are going to prove the following: 

THEOREM 1.1: Suppose NS~+ is precipitous for a regular/z > R1 and GCH. 

Then there exists an (ca, # + 1)-repeat point over #+ in K(.~). 

Remark: It is shown in [Gi] that starting with an (ca, #+l)-repeat  point it is pos- 

sible to obtain a model of NS~,+ precipitous. On the other hand, precipitousness 

of NS~ ~ implies (ca, #)-repeat point. 

In what follows we will actually continue the proof of 2.5.1 of [Gi] and, assuming 

No and NS~,+), we will obtain that the NS~,+ is precipitous (or even only NS~,+ 

(ca, # + 1)-repeat point. 

Proo~ Let a = #+. We consider the ordinal a* < or(g) of the proof of 2.5.1 

[Gi]. It was shown there to be a (ca, #)-repeat point, under the assumption of 

nonexistence of up-repeat point and/z is not the successor of cardinal of cofinality 

ca. It was noted in [Gi] (the remark after Lemma 2.11) that if it is possible 

to remove the assumption of ca-closure of submodels in the Mitchell Covering 

Lemma, then the constructions of [Gi] apply also to # which is the successor of a 

cardinal of cofinality ca. R.-D. Schindler claimed in [Sc] that the assumption on ca- 

closure can be removed. So, further, we do not separate the treatment of such #'s. 

Only submodels in this case, instead of being ca-closed, will be required to contain 

* For a singular # the situation is less clear but, recently, M. Magidor constructed 
a model with NS~+ 1 precipitous starting from a measurable Woodin cardinal. 
It appears close to equiconsistency by results of W. Mitchell, J. Steel and 
E. Schimmerling. 
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all implicitly mentioned w-sequences. Intuitively, one can consider a* as the least 

relevant ordinal. Basically, an ordinal a is called re levant  if some condition in 

NS~ forces that  the measure .~(a, a) is used first in the generic ultrapower to 

move ~ and the cofinality of ~ changes to w. Using a nonexistence of up-repeat 

point, a set A �9 ~(~,  a*) such that A r ~'(~, ~) for ~, o7(~) > ~ > a*, was 

picked. This set A was used in [Gi] and will be used here to pin down a*. Thus, 

for r < ~, if there exists a largest rl < oY(3) such that  A n r �9 .~(r, vl) then 

we denote it by r*. In this notation ~* is just c~*. If E = {r < ~;] there exists 

v*} then E �9 ~(~;,/3) for every ~ with a* < ~ < oY(~). Also, AUE contains all 

points of cofinality w of a club, since by the definition of a*, A U E �9 N{~'(~, a)]a 

is a relevant ordinal}. 

CLAIM 1: The set of a < ~; satisfying (a) and (b) below is stationary in ~;. 

(a) cf a = p; 

(b) for every i < # 

{3 < a [ c / 3  = R0 and oY(;3) _> ~* + i }  

is a stationary subset of a. 

Proof: Otherwise, let C be a club avoiding all the a 's  which satisfy (a) and 

(b). Let N be a good model in the sense of 2.5.1 of [Gi], with C E N. Consider 

(r~NIn < ~), (dNin < w) and (;3~[n < ~) of 2.5.1 [Gi]. Recall that  (rN[n < w) is 

a sequence of indiscernibles for N, each v N is a limit point of C, d N c_ C is an 

w-club in L.J(N n r,,) consisting of indiscernibles of cofinality w in C, for v �9 d N 

v* exists and ;3~ represents it over ~r i.e. v* = C(Jr B~*, 13(v))(v), where C is the 

coherence function (identically for every v, v ~ �9 dN). Also, for every r < r ~ in 

d N 3re(v) </3N(v'), where 3x(~.) is the index of the measure on a for which v 

is an indiscernible. 

Fix n < w. Then, rn �9 C. By 2.1 or 2.14 of [Gi] we can assume that  cfr,~ = #. 

Since (b) fails, there are i,~ < # and C,, a club of r ,  disjoint with 

{v < r,d cfv = Ro and J:(v) > v* + i,~}. 

Using elementarity of N, it is easy to find such Cn inside N. Let 6 = (.J.<~, in. 

Using 2.1.1 (or 2.15 for inaccessible ~) of [Gi] we will obtain N* D N, which agrees 

(mod initial segment) with N about indiscernibles but has sets d N" long enough 

to reach 6, i.e. there will be a final segment of r ' s  in d N" with ~N" (r) > ~,~ + 6. 
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But then, for such 7", oY(~ ") _> r* + 5. This is impossible, since C~, dn N" are both 

clubs of r,~ in N* with bounded intersection. Contradiction. I 

Let S denote the set of c~'s satisfying the conditions (a) and (b) of Claim 1. 

Now form a generic ultrapower with S in the generic ultrafilter. Denote it by 

M and let jr(g, ~) be the measure used to move a. Then, in M cf a = # and 

Si = {/3 < ~ J cf/~ = R0 and oJ=(/3) >/3* + i }  is a stationary subset of ~ for every 

i < #. Hence Si is stationary also in V. 

CLAIM 2: For every i < # and X E P(~)A/C( j r ) ,  X E ~'(~,a* + i )  iff 

S i \{~ < aloe=(/3) >/3* + i and Z n/3 E ~'(/~,/3 + i)} is nonstationary. 

Proof: Fix i < #. ~(~, a* + i) is an ultrafilter over P(a)  n/c(Jr),  so it is enough 

to show that for every X E ~'(~, a* + i) the set Si\{/~ < aloJ:(/3) </3* + i and 

X n/3 E .~(/~,/3 + i)} is nonstationary. 

Suppose otherwise. Let X E ~'(~, a* + i) be so that 

S'  = Si\{/3 < ~Jo~(/~) >/3* + i and X n/3 6 ~'(/~,/3 + i)} 

is stationary. 

Without loss of generality we may assume that S' already decides the relevant 

measure, i.e. for some 7 < oY(~), S' forces the measure ~'(~, 7) to be used 

first to move ~ in the embedding into generic ultrapower restricted to /C(~'). 

Now, S' C_ {/3 < tzJo~(/3) > /3* + i}. So, 7 > 7" + i, where 7* is the largest 

ordinal 7* below 7 with A E Jr(to, 7*). If 7" = a*, then a* + i < "y and hence 

X *  = {/3 < ~:JoY(/3) >/3* + i and X n/3 ~ 5r(/3,/3 + i)} 6 ~r(~, 7) since this is 

true in the ultrapower of ~ ( ~ )  by ~r(~, 7). This leads to a contradiction, since, 

i f j  : V ~ M is a generic embedding forced by S', then r E j(S') and ~ 6 j(X*), 

but S' n X* = 0. Contradiction. 

If "~* < a*, then also ~/< a* which is impossible, since there are no relevant 

ordinals below a*. Also, "~* cannot be above a* since a* is the last ordinal 

with A e ~'(~, ~). 1 

For i < # and a set X _C x let us denote by X* the set 

{/3 < nJoY(/3) >/3" + i and X ~/3 ~ ~r(/3,/3 + i)}. 

By Cub~ we denote the closed unbounded falter over n and let Cub~ [ Si be its 

restriction to Si, i.e. {E C_ xJE _D C n Si for some C 6 Cub~}. 
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CLAIM 3: For every i < #, 

.~(~, o~* + i) = { x  �9 (v(~) n K:(7))MIX~ �9 (Cub,, r s~)M}. 

Proo~ Let X �9 9t - (~,a*+i) ;  then, by Claim 2, X~ �9 Cub,  [ Si in V. But 

then, also in M, X~ �9 (Cub~ [ S~) M, since (Cub~) M D (Cubic) V. Now, if 

X r ~'(~, o* + i), then Y = ~ \X  �9 9r(~, a* + i), assuming X �9 P(~) n K(A-). 

By the above, Yi* �9 (Cub~ [ S~) g. But X M Y = 0 implies X~' M Yi* = 0. So 

x~ r (Cub~ [ s~) M. I 

CLAIM 4: oY(~) > a* + p. 

Proof: By Claim 3, ./c(~, a* + i) �9 M for every i </~, Hence (o(~)) # > a* + #. 

But now, in V, o~=(~) >_ a* + # + 1. 1 

We actually showed more: 

CLAIM 5: S IF" ~ >_ a* + # and for every i < lz 

M M . 

~'(~,~" + i )  = { x  �9 (7,(~)n ~c(~-))~lX~ * �9 (Cub~ t S4 ~ } , 

where ~ is a name of the index of the first measure Jr(to, ~) used to move ~ and 

M is a generic ultrapower. 

In order to complete the proof, we need to show that every Y E ~'(tr a* + #) 

belongs to ~r(~, 7) for unboundedly many 7's below a*. The conclusion of the 

theorem will then follow by [Gi, Sec. 1]. So let Y E ~'(a, a* + #). Consider the 

set Y* -- {~ < ~ J ~* exists, oY(~3) > ~* +/~ and Ynj3 e Y(~, ~* +#)}  uY.  Then 

Y* e n { f ( ~ , a ) [ a *  + # _< a < o~(tr It is enough to show that Y* belongs to 

~'(~, 7) for unboundedly many 7's below a. 

CLAIM 6: S \ Y *  iS nonstationary. 

Proof: Suppose otherwise. Let S I C_ S\Y* be a stationary set forcing ~'(~r ~) 

to be the first measure used to move ~ in the ultrapower, where ~ < o~(g). 

Then, by Claim 5, ~ _> a* + #. Hence, Y* �9 jc(~, ~), which is impossible, since 

Y* n S' = 0. Contradiction. I 

CLAIM 7: Or* is a I~ "k 1-repeat point. 

Proof: Let Y* be as above. It is enough to find 7 < a* such that Y* E jc(~, 7). 

Let C C_ tr be a club avoiding S \Y  ~ Let N, {r ,  In < w} be as in the proof of 
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Claim 1 (i.e. as in the proof of 2.5.1 [Gi]) only with the club of Claim 1 replaced 

by C and with Y* E N. Then T,`'S are in S N C, and hence in Y*, which means 

that for all but finitely many n's, Y* E F(a ,~u(r , ` ) ) ,  by [Mil ,Mi2], since rn's 

are indiscernibles for fin (rn)'S. I 

The claim does not rule out the possibility that some Y* reflects only boundedly 

many times below a*. Thus, there is possibly some 7/< a* such that the ~3 N (v,`)'s 

of Claim 7 are always below r/. This would mean that ~,  > ~g(v,`), where 13~ is 

the stabilized value of 03(v))* for v E d~. We will use Claim 5 in order to show 

that this is impossible. Namely, the following holds: 

CLAIM 8: In the notation of Claim 7, for all but finitely many n's, 03N(r,`)) * = 

Z;. 

Proof." By Claim 5, for all but nonstationary many v's in S the following 

property (*) holds: oT(v) _> v* + p  and, for every i < p, Jr(v,v* + i )  = 

{X �9 P(v)M K:(Jr)IX/" E Cub~ r { P <  v ic fP= R0 and J:(p) > p* +i}} .  

Without loss of generality let us assume that (*) holds for every element of S, 

otherwise just  remove the nonstationary many points. Then, preserving notations 

of Claim 7, r,`'s satisfy (,). We now show that ultrafilters Jr(T,`, r~* +i) correspond 

to Jr(~:, ~* + i) (i.e. r,* + i  = C ( ~ , ~  + i,~(r,`))(r,`)) for all but finitely many 

n < w and all i < #. 

Let ~ :  denote (~N(v,`))* and we will drop the upper index Y further. Then 

v,~ + i  = C(~, ~ +i, ~(v,~)) (r,`) for every n < w, where C is the coherence function 

(see [Mill or [Gi]). Suppose that B~ • ~ :  for infinitely many n's. For simplicity 

let us assume that this holds for every n < w. In the general case only the 

notation is more complicated. There will be Xn �9 (Jr(R, ~:)\Jr(a,/3~*)) N Y for 

every n < w, since N is an elementary submodel. Let n < w be fixed. Pick 

~(Jr)-least X,` �9 Jr(R, 3 : ) \ J r ( a ,  j3~). Still it is in N by elementarity. Also its 

support (in the sense of [Mil, Mi2]) will be below rn, i.e. X,` = hN(~), for ~ < r,`, 

where h N is the Skolem function of N n/(:(Jr). The reason for this is that X,` 

appears once both ~ :  and fi~, appear. But fl,~ appear below rn since the support 

OFT,, is below rn and 3~ appear before rn since, for v �9 d,` C_ r , ,  (BN(v))* = ~*. 

Hence X,` ('10-~ �9 Jr(r~, r~). Then by (*), 

(X,`); �9 Cub~  I {P < r,`[ cfp = Ro and o'r(p) > p*). 

This is clearly true also in N. But then (X,)~ M U(N n r , )  contains an w-club 

intersected with the set {p < r,`[cfp = Ro and oY(p) > p~ Hence (X,`)~ M d,, 
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is unbounded in U(N rh r,~). Then (X,~)~ E jc(~,/3* + i) for some i, 0 < i < #, 

which implies that  Xn e ~r(~,/3~). Contradiction. | 

Combining Claims 7 and 8 we obtain that  Y* E ~(~,/~* + X) for some X >- #, 

for all but finitely many n's. Now,/3*'s are unbounded in a* by [Gi] and hence 

we have an unbounded reflection of Y below a*. | 

2. O n  a fas t  s e q u e n c e  o f  ord ina l s  or  "ZFC variant"  o f  a l e m m a  o f  [Gi] 

In this section were present a "ZFC variant" of Lemma 2.18 of [Gi]. It was used 

here originally to answer a question of [Gi] showing that the saturatedness of NS~ ~ 

over inaccessible ~ implies an inner model with 3a o(a) = a ++. But since then 

it was shown by S. Shelah and the author that NS~ ~ cannot be saturated over an 

inaccessible ~. We think that  this "ZFC variant" is still interesting. Moreover 

a variation of it turned out to be crucial in the proof of the inconsistency. The 

argument here will be somewhat simpler and for a reader familiar with generic 

ultrapowers it will be easy to relate it to saturated ideals. 

PROPOSITION 2.1: Let V1 C V2 be two models of ZFC.  Let ~ be a regular 

cardinal of V1 which changes its cofinality to 0 in 112. Suppose that in V1 there is 

an almost decreasing (rood nonstationary or equivalently rood bounded) sequence 

of clubs of ~ of length (n+) vl so that every club of ~ of 111 almost contains one 

of the clubs of the sequence. Assume that V2 satisfies the following: 

(1) cf(~+) vl _> (20) + or cf(~+) v' = O; 

(2) ~ > e +.  

Then in V2 there exists a cofinal in ~ sequence (Ti I i < e )  consisting of 

ordinals of cofinality > e + so that every club of ~ of V1 contains a final segment 

of (r~ l i < e>. 

Remark: (1) If in Vx, 2 ~ = ~+, then dearly there exists an almost decreasing 

sequence of clubs of ~ of length ~+ so that  every club of ~ of V1 almost contains 

one of the clubs of the sequence. 

(2) M. Dzamonja and S. Shelah [D-Sh] using club guessing techniques were 

able to replace the condition (1) by weaker conditions. 

Proof: If cf(~+) v~ = O then we can simply diagonalize over all the clubs. So 

let us concentrate on the case ef(~+) v~ _> (2e) +. Suppose otherwise. Assume for 

simplicity that  e = R0. Let C be a club in ~ in 1"1. Define in II2 a wellfounded tree 
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(T(C), <-c}. Fix a well ordering -< of a larger enough portion of 112. Let the first 

level of T(C) consist of the -<-least cofinal in n sequence of order type aJ. Suppose 

that T(C) I n -I- 1 is defined. We define Levn+l(T(C)). Let rl E Levn(T(C)). 

Let rl* be the largest ordinal in T(C) r n + 1 below r b We assume by induction 

that it exists. If cfrl = Ro, then pick (rb~ I n < w} the least cofinal sequence 

in rl of order type w. Let the set of immediate successors of r/, Sucr(c)(~?), be 

In< , > 
If cf~? > ttl, then consider ~?' = U(C r'l rl). If rf = rh then let SUCT(C)(rl) = 0. 

If ~?* < r/ < rh then let SUCT(V)(rl) = {y'}. Finally, if ~?' <_ y* then let 

SUCT(O)(rl) = 0. This completes the ~nductive definition of (T(C), <_c). Obvi- 

ously, it is wellfounded and countable. Let T*(C) denote the set of all endpoints 

of T(C) which are in C. Notice that by the construction any such point is of 

uncountable cofinality. Also, T*(C) is unbounded in ~, since otp(C) = ~ and 

~ > R 1 .  

There must be a club C1 C_ C in V1 avoiding unboundedly many points of 

T*(C), since otherwise the sequence (v/li < R0) required by the proposition 

could be taken from T*(C). This means, in particular, that for every a < 

there will be 

= (ul, . . . ,  u,~) e T(C) N T(C1) 

so that 

(a) cf vn > 11o; 

(b) SUCT(C)(Un) = {un+l} for some un+l �9 C \a ;  

(c) either 

(cl) Sucr(c , ) (v,)  = 0 

o r  

(c2) for some p �9 (C] ~ v,,+l)\a SuCT(cl)(v,~) = {p}. 

Now define a sequence (C~ l a < (2a0) +) of clubs so that 

(1) C,  is a club in a in V1; 

(2) if fl < a then C,~\Co is bounded in ~; 

(3) C~+1 avoids unboundedly many points of T*(C,~). 
Since cf(tr K _> (2~~ + and in 111 there is an almost decreasing (mod bounded) 

sequence of ~+-clubs generating the club filter, there is no problem in carrying 

out the construction of (C, I a < (2~~ +) satisfying (1)-(3). The construction 

of C~+1 over C.. will be like those above for C1 and C. Also the conditions Ca), 

(b), (c) above will be satisfied by Ca, C~+1 replacing C, C1. 



Vol. 99, 1997 NONSTATIONARY IDEAL 183 

Shrinking the set of a's if necessary we can assume that for every a, ~ < (2 ~~ 

(T(Co), <c2, <) and <T(Ca), <cB, <) are isomorphic as trees with ordered 

levels. 

Let (~;m I m < w) be the -<-least cofinal in ir sequence. 

Let a < ~ < (2~r176 +. Since C a is almost contained in C,~+l, it avoids unbound- 

edly many points in T*(C~). So for every m < w there is ~ = (vl,...,v,) �9 

T(Ca) n T(Ca) so that 
(a) cf v.  > Ro; 

(b) SucT(Co)(P.) = {u~+z} for some u~+ 1 �9 Co\~;,~; 

(c) for some/~n+l �9 (Ca n//n~+l)\Krrt, SUCT(C#)(//n) -~- {//~+1}" 
Thus, pick ~ > m so that Ca\~t_t  c_ Ca. We consider subtrees 

T(C.y)l = {7 �9 T(C.~)[qk _> t W _>c, (tck)} 

where "y -- a, ft. 

Let 7r be an isomorphism between T(C,~) and T(Ca) respecting the order of 
the levels. Notice that the first level in both trees is the same {lqli < w}. Hence, 

7r will move T(C,,)t onto T(Ca)t. 
Pick the maximal n < w such that ~r is an identity on (T(C,~)t) r n + 1. It 

exists since T*(C,~)\C a is unbounded in ir Now let u be the least ordinal in 

Levn+1 (T(C~)t) such that Ir(Ivb... , vn, v)) ~t (vl,..., u,, v), where (vl,..., vn) 
is the branch of T(C,~)t leading to v. 

Consider u,~. If cf vn = Ro, then we are supposed to pick the -<-least cofinal 

in v,, sequence (uni[i < w) and the maximal element u~ of the tree T(Ca) below 

v,,. SuCT(Co)(V,O will be {v,~i]i < w and v,,i > v~}. Notice that  v~ >_ ~;,,-1 by 

the definition of the tree T(Co). Hence, either v~ = 'r or u:, �9 T(C~,)t r n + 1 
since elements of T(Co) which are above s , , - I  in the tree order are below it as 

ordinals. But since T(C,,)t I n + l  = T(Ca)t [ n + l  and ,r �9 T(Ca), the same 

is true about SUCT(c~)(v,,), i.e. it is {v,~i[i < ca and v,u > v:,}. Then ~r will be 

an identity on SuCT(Co)(V,,,) and, in particular, will not move v. Contradiction. 

So ef v, should be above R0. Once again the maximal elements of T(C,~) [ n+ 1 

and T(Ca) [ n + 1 below v,, are the same. Let v~ denote this element. Now, 

V �9 SUCT(C,.)(I /n)  , hence v = [J(Co n v,) v:, < v < v,  and Sucr(co)(V,) = {v} 

by the definition of the tree T(Co). ~ is an isomorphism, so SuCT(c,)(v,.,) ~ 0. 

By the definition of the tree T(Ca), v* < v' < v,, and SUCT(C~)(v.) = { v ' }  where 
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v' -- U(C~r'/vn). By the choice of v, v ~ v'. But y, v' > ~e-1 and C#\~e-1 c_ Ca, 

so v ~ E Ca. Hence v ~ < v and the sequence (Vl, . . . ,  v~) is as desired. 

Let (T, _<T, _<) be a countable tree consisting of countable ordinals with the 

usual order _< between them isomorphic to (T(Ca),-<co,-<) (a < (2~~ �9 Define 

a function h : [(2~~ 2 ~ w as follows: f ( a ,  fl) = the minimal element of T 

corresponding to some 

-9 = ( v l , . . . ,  vn) e T(C~) ~ T(C#) 

satisfying the conditions (a), (b) and (c). 

By Erdbs-Rado there exists a homogeneous infinite set A C_ (2~o) +. Let 

(an [ n < w) be an increasing sequence from A. Then there is P = ( v l , . . . ,  v,~) E 

N,~<~T(Ca~)  witnessing (a), (b), (c). But by (c), a~ . a ~ + l  v~+ 1 > v~+ 1 for every 

m < w. Contradiction. | 

If there is no inner model of 3ao(a) = a ++, then a sequence (r~ln < w) of 2.1 

is actually a sequence of indiscernibles for ~. This follows easily from Proposition 

2.1 and the Mitchell Covering Lemma [Mi3]. 

PROPOSITION 2.2: The final segment of the sequence ('rn I n < w) consists of 

indiscernibles for ~. 

Proo~ Suppose otherwise. Then by the Mitchell Covering Lemma [Mi3] there 

is h E h:(~) and 6n < Tn (n < w) such that h(6n) >_ ~-n for infinitely many n's. 

Define a club in/E(Jv): 

C = {v < ~lh"(v) c_ v}. 

Then, by the choice of (r~[n < w), there is no < w such that for every n >_ no 

T~ E C, which is impossible. Contradiction. | 

3. On the  s trength  of  precipitousness  of a nonstat ionary  ideal over an 

inaccessible 

We are going to show that the assumptions used in [Gi] making NS,  precipitous 

((w, g+ + 1)-repeat point) and NS~ ~ precipitous ((w, a+)-repeat point) over an 

inaccessible a can be weakened to an (w, g + 1)-repeat point and to an (w, a)- 

repeat point, respectively. This is quite close to the equiconsistency, since by 

[Gi], an (w, < a)-repeat point is needed for the existence of such ideals. 
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THEOREM 3.1: Suppose that there exists an (w, ~+ 1)-repeat point over ~. Then 

in a generic extension preserving inaccessibility of ~, NS~ is a precipitous ideal. 

The proof combines constructions of [Gi] and [Gil]. We will stress only the 

new points. 

Sketch of the Proof: Let a < o(x) be an (w,a + 1)-repeat point for 

<.$'(~,a') [ a '  < o(~)), i.e. c f a  = R0 and for every A E N{JC(x,a * + i) [ 

i <_ g} there are unboundedly many /3's in a such that /3 + a < a and A E 

N{y(x , /3  + i) I i < x}. 
As in [gi] we first define the iteration 79a for 6 in the closure of 

{/3 -< ~ I /3 is an inaccessible or /3 = At + 1 for an inaccessible 7}. On limit 

stages as in [Gi I the limit of [Gi2] is used. Define 796+1- If o(6) r /3 + 6 or 

o(6) r ~ + 6 + 1 for some/3 then 79a+1 = 79a * C(6 +) * 79(& o(6)) exactly as in 

[Gi], where C(6 +) is the Cohen forcing for adding 6 + functions from 6 to 6 and 

79(6, o(6)) is a forcing used in [gi] for changing cofinalities without adding new 

bounded sets. 

Now let o(6) = /3  + 6 for some ordinal/3, fl > & First we force as above with 

c(6+). 

CASE 1: The value of the first Cohen function added by C(6 +) on 0 is not 0. 

Then we force as above with 79(6, o(6)). 

CASE 2: The value of the first Cohen function added by C(6 +) on 0 is 0. 

Then we are going to shoot a club through N{.T(6,/3 + i) I i < 6} using the 

forcing notion Q described below. 

Q = {(c,e) I c c_ 6 closed, it[ < 6, e C_ N{.T(6,/3 + i) [ i < 6}, le[ < 6}, 

(cl ,el)  <_ (c2, e2) iff c2 is an end-extension of cl, el c_ e2 and, for every A E el, 

c2\cl C_ A. Now every regular i < 6 forcing with 79(6,/3 + i) produces a club 

through N{JC(6,/3 + j)  [ j < i} changing cofinality of 6 to i. Thus Q contains an 

/-closed dense subset in any P(a,/3 +/)-generic extension of V p~ Based 

on this observation, we are going to use here the method of [Gill. It makes the 

iteration of such forcings Q possible. 

If 0(6) =/3  + 6 + 1 for some [3, /3 > 6, then we combine both previous cases 

together inside the Prikry sequence produced at this stage. 

Namely, we proceed as follows. Let i : V -* M ~- Ult(V, }-(6,/3 + 6)). We 

consider also the second ultrapower, i.e. N _~ Ult(M, }'(i(6),i(/3) + i(6)). Let 

k : M ~ N and j = k o i : V ~ N be the corresponding elementary embeddings. 
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Then, in N, o($) --/3 + $ and o(i(~)) = i(/3) + i(~5). So, in N, both/f  and i(~) are 

of the type of the previous cases. We want to deal with ~ as in Case 1 and with 

i(~f) as in Case 2. This can easily be arranged, since we are free to change one 

value of a Cohen function responsible for the switch between Cases 1 and 2. The 

next stage will be to define an extension 5r* (~,/3+/f) of ~'(~,/3+~) x Jr(/f,/3+~) in 

V[G~], where G6 c P~ is generic. For this use [Gill where N was first stretched 

by using the direct limit of (~'(i(~), i(/3)+~) I ~ < i(6)). Finally we force a Prikry 

sequence using ~'* ($, f~ + ~f). Notice that the following holds: 

(*) if ((/fn,pn) I n < ~v) is such a sequence then both (~n [ n < ~v) and 

(Pn I n < w) are almost contained in every club of ~ of V. 

Simply because (/f, i(~)) e j (C)  for a club C c_ ~ in Y. 

This completes the definition of P~+I and hence also the definition of the 

iteration. 

The intuition behind this is as follows. We add a club subset to every set 

A E ~{9r(~, a + i)li ___ ~}. a is (w, ~r 1)-repeat point, so A reflects unboundedly 

many times in a,  i.e. A E n{Y:(~,/3 + i)li _< ~} for unboundedly many/3's in a. 

Reflecting this below ~, we will have A n/5 E n{~'(~,-y + 1)1i _< ~}, where 

o(~) = 7' + ~. In [Gi, Sec. 3], we had (a, ~+ + 1)-repeat point which corresponds 

to n{~'(~, ~/+ i)li __ ~+ }. Then just the forcing P(~, o(~)) will add a club through 

every set in n{~'(~, ~/+ i)[i <_ ~+}. Here our assumptions are weaker and we use 

the forcing Q instead. There are basically two problems with this: iteration and 

integration with :P(~,/3)'s. For the first problem the method of [Gil] is used 

directly. The problematic point with the second is that once using Q we break 

the Rudin-Keisler ordering of extensions of ~-(~,/3)'s used in P(~, o(fi)). In order 

to overcome this difficulty, we split the case 0(5) =/3  + ~ into two. Thus in Case 

1 we keep Rudin-Keisler ordering and in Case 2 force with Q. Finally, at stages 

a with o($) =/3  + ~ + 1 both cases are combined in the fashion described above. 

The rest of the proof is as in [Gi, Sec. 3]. 

The following obvious changes needed to be made: instead of E E 

</3  < + we now deal with E e < <- + 

and instead of E(~ +) there we use E(~) = {6 E E I there is ~ s.t. o'r(6) = 3 + ~r 

and 6 N E e n{~r(6, ~')]~ _< 5' < ~ + ~+} which belongs to ~'(~, fl + ~) for un- 

boundedly many/3 's  in a.  Lemmas 3.2-3.5 of [Gi] have the same proof in the 

present context. The changes in the proof of Lemma 3.6 of [Gi] (actually the 

claim there) use the method of iteration of Q's and the principal (*). 
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If we are not concerned about a regular cardinal, then the same construction 

starting with an (w, n)-repeat point turns NS sing into a precipitous ideal. So the 

following holds: 

THEOREM 3.2: Suppose that there exists an (w, ,~)-repeat point over n. Then in 

a generic extension preserving inaccessibility of ~, NS Sing is a precipitous ideal. 

4. Open problems 

1. Is the strength of NS~ ~ precipitous over an inaccessible ~ (w, < ,~)-repeat 

point? 

2. Can a model for NS~ precipitous over an inaccessible ,~ be constructed from 

something weaker than an (w, ,~ + 1)-repeat point? 

3. What  is the strength of NS~ precipitous over the first inaccessible? 

The upper bound for (3) is a Woodin cardinal, see [Sh-Wo]. If it is possible to 

construct a model with NS~ ~ precipitous from an (w, < ,~)-repeat point, then we 

think that this assumption is also sufficient for (2) and (3). 

4. How strong is "there is a precipitous ideal over the first inaccessible"? 

By [Sh-Wo] a Woodin cardinal suffices. On the other hand, one can show that 

s least o(~) = ,~ is needed. 
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